A Novel Splice Site Prediction Method using Support Vector Machine ?
نویسندگان
چکیده
We present a novel classification method for splice sites prediction using support vector machine (SVM). The method first represents input sequences by sequence-based features, including the information of the distribution of tri-nucleotides and the conserved features surrounding the splice sites characterized by Markov model. An F-score based feature selection method is then used to select informative features to improve the performance. Finally, SVM is employed to classify the splice sites with the selected features. Experimental results show that this method improves splice site prediction accuracy and performs better than the existing methods such as MM1-SVM, Reduced MM1-SVM and some other methods.
منابع مشابه
Online Voltage Stability Monitoring and Prediction by Using Support Vector Machine Considering Overcurrent Protection for Transmission Lines
In this paper, a novel method is proposed to monitor the power system voltage stability using Support Vector Machine (SVM) by implementing real-time data received from the Wide Area Measurement System (WAMS). In this study, the effects of the protection schemes on the voltage magnitude of the buses are considered while they have not been investigated in previous researches. Considering overcurr...
متن کاملFeature subset selection for splice site prediction
MOTIVATION The large amount of available annotated Arabidopsis thaliana sequences allows the induction of splice site prediction models with supervised learning algorithms (see Haussler (1998) for a review and references). These algorithms need information sources or features from which the models can be computed. For splice site prediction, the features we consider in this study are the presen...
متن کاملHigh-accuracy splice site prediction based on sequence component and position features.
Identification of splice sites plays a key role in the annotation of genes. Consequently, improvement of computational prediction of splice sites would be very useful. We examined the effect of the window size and the number and position of the consensus bases with a chi-square test, and then extracted the sequence multi-scale component features and the position and adjacent position relat...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملHybrid Approach Using SVM and MM2 in Splice Site Junction Identification
Prediction of coding region from genomic DNA sequence is the foremost step in the quest of gene identification. In the eukaryotic organism, the gene structure consists of promoter, intron, start codon, exon and stop codon, etc. In the prediction of splice site, which is the separation between exons and introns, the accuracy is lower than 90% even when the sequences adjacent to the splice sites ...
متن کامل